GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9702/01
 PHYSICS
 Paper 1 (Multiple Choice (AS))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	01

Question Number	Key	Question Number	Key
1	B	21	B
2	B	22	D
3	B	23	B
4	A	24	D
5	C	25	C
6	B	26	B
7	C	27	C
8	C	28	C
9	D	29	B
10	D	30	C
11	B	31	A
12	A	32	B
13	D	33	B
14	B	34	B
15	A	35	C
16	C	36	D
17	C	38	B
18	D	39	C
19	B	40	B
20	A		

June 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9702/02
 PHYSICS
 Paper 2 (Structured Questions (AS))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	02

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a Bmark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C -mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or answer marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	02

1 $\mathrm{kg} \mathrm{m}^{-3}$ B1
frequency or count rate or activity or decay constant B1
NC^{-1} or $\mathrm{V} \mathrm{m}^{-1}$ or $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \mathrm{C}^{-1}$ etc. B1
momentum or impulse B1(Allow solidus notation and non SI units)
2 (a) (i) distance from a (fixed) point M1
in a specified direction A1
(Allow 1 mark for 'distance in a given direction')
(ii) (displacement from start is zero if) car at its starting position B1
(b) (i) $1 v^{2}=u^{2}+2$ as
$28^{2}=2 \times a \times 450$ (use of component of 450 scores no marks) C1
$\mathrm{a}=0.87 \mathrm{~m} \mathrm{~s}^{-2}$ A1
(-1 for 1 sig. fig. but once only in the question)
(i)2 $\quad v=u+$ at or any appropriate equation $28=0.87 t$ or appropriate substitution C1
$\mathrm{t}=32 \mathrm{~s}$ A1
(i)3 $\quad E_{k}=1 / 2 m v^{2}$ C1
$=1 / 2 \times 800 \times 28^{2}$
$=3.14 \times 10^{5} \mathrm{~J}$. A1
(i)4 $\quad E_{\mathrm{p}}=m g h$ C1
$=800 \times 9.8 \times 450 \sin 5$ C1
$=3.07 \times 10^{5} \mathrm{~J}$ A1
(ii) power = energy/time C1
$=\left(6.21 \times 10^{5}\right) / 32.2$ C1
$=1.93 \times 10^{4} \mathrm{~W}$ A1
(power $=F v$ with $F=m g \sin \theta$ scores no marks)
(iii) some work also done against friction forces. M1
location of frictional forces identified A1
(allow reasonable alternatives)
3 (a) (i) ductile B1
(ii)1 L shown at end of straight line B1 31
(ii)2 reciprocal of gradient of straight line region B1 1
(b) (i)1 circumference $=3 \pi \mathrm{~cm}$ or arc $=r \theta$ C1
extension $=(6.5 / 360) \times 3 \pi$ $=1.5 \sin ($ or tan $) 6.5$. M1
$=0.17 \mathrm{~cm}$ A0
(i)2 strain $=$ extension/length C1
$=0.17 / 250$
$=6.8 \times 10^{-4}$ A1
(ii) stress = force/area C1
$=(6.0 \times 9.8) /\left(7.9 \times 10^{-7}\right)$ C1
$=7.44 \times 10^{7} \mathrm{~Pa}$ A1

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	02

(iii) Young modulus $=$ stress/strain C1
$=\left(7.44 \times 10^{7}\right) /\left(6.8 \times 10^{-4}\right)$

$$
=1.1 \times 10^{11} \mathrm{~Pa}
$$ A1

(iv) remove extra load and see if pointer returns to original position or wire returns to original length B1
e.g. both transverse/longitudinal/same type 4 (a) e.g. both transv, same direction of polarisation, etc....... 1 each, max 3 B3
(allow 1 mark for any condition for observable interference)
(b) (i)1 allow $0.3 \mathrm{~mm} \rightarrow 3 \mathrm{~mm}$ B1
(i)2 $\lambda=a x / D$ (allow any subject) B1
(ii)1 separation increased B1
less bright B1
(ii)2 separation increased B1
less bright B1
(ii)3 separation unchanged B1
fringes brighter B1
further detail, i.e quantitive aspect in (ii)1 or (ii)2 B1(in (b), do not allow e.c.f. from (b)(i)2)
5 (a) (i) resistance $=V / I$ C1
$=6.0 /\left(40 \times 10^{-3}\right)$ A1$\quad=150 \Omega \ldots \ldots$.$\quad=150 \Omega \ldots \ldots$.
(ii) at 8.0 V , resistance $=8.0 /\left(50 \times 10^{-3}\right)=160 \Omega$. C1
change $=10 \Omega$ A1
(b) (i) straight line through origin M1
passes through $I=40 \mathrm{~mA}, \mathrm{~V}=8.0 \mathrm{~V}$ A1
(ii) current in both must be 40 mA C1
e.m.f. $=8.0+6.0=14.0 \mathrm{~V}$ A1
6 (a) (i) curve is not smooth, fluctuations, etc B1
(ii) curve is same shape or same half-life, not affected by temperature, etc B1
(b) (i) 134 B1
(ii) $\quad \alpha$-particle shown as ${ }_{2}^{4} \mathrm{He}$ or as ${ }_{2}^{4} \alpha$ B1
nucleon number of Po shown as 216 B1
proton number of Po shown as 84 B1

June 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 25

SYLLABUS/COMPONENT: 9702/03

PHYSICS
Paper 3 (Practical (AS))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	03

(a)	(iv)	\% uncertainty in θ	2/1/0
		Accept $\Delta \theta$ to $\pm^{\circ} \pm 2^{\circ}$ (1 mark)	
		Ratio and percentage ideas correct (1 mark)	
(d)	(i)	Measurements	3/2/1/0
		Expect to see at least 6 sets of results (1 mark)	
		Less than 6 sets does not score this mark	
		Check a value of T^{4}. Underline checked value and tick if correct	
		(1 mark)	
		Ignore small rounding errors. This mark cannot be awarded if there	
		are no raw times, number of oscillations measured in a fixed time, or	
		the stopwatch has been misread. If there is no record of the number	
		of oscillations then this mark cannot be scored	
		It may be necessary to refer to page 3 of script for a value of n	
		Check a value for $\cos \theta$. Underline checked value and tick if correct	
		(1 mark)	
		Ignore small rounding errors. Expect to see a correct sign	
		If either incorrect, write in correct value and -1 eeoo	
		Minor help given by Supervisor, -1. Major help, then -2	
(d)	(i)	Repeated readings	1
		For each value of θ there must be at least two values of t	
		An average value does not have to be calculate	
(d)	(i)	At least 10° between the readings of θ	1
(d)	(i)	Quality of results	2/1/0
		Judge by scatter of points about Examiner line of best fit	
		6 reasonable trend plots with little scatter (2 marks)	
		5 trend plots, or some scatter of plots (1 mark)	
		Large scatter/no trend/wrong quantities plotted (zero)	
(d)	(i)	Column headings	1
		Check the $1 / T^{4}$ column heading only	
		Quantity and unit (s^{-4}) must be correct	
(d)	(i)	Consistency	2/1/0
		Apply to raw values of θ and t only (one mark each)	
		Values of θ must all be given to the nearest degree. Do not allow tenths of a degree	
		Values of t must all be given to the nearest 0.1 s or 0.01 s	
		Do not apply to average values	
(d)	(ii)	Justification of number of sf in $\cos \theta$	1
		Answer must relate sf in θ to sf in $\cos \theta$	
		Do not allow answers in terms of decimal places	
		Do not allow vague answers that are given in terms of 'raw data'	
(e)	(i)	Axes	1
		Scales must be such that the plotted points occupy at least half the graph grid in both the x and y directions (i.e. 4×6 in portrait or 6×4 in landscape)	
		Axes must be labelled with the quantity plotted. Ignore units. Do not allow awkward scales or gaps of more than three large squares between the scale markings	

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	03

(e) (i) Plotting of points

Check a suspect plot. Circle and tick if correct. If incorrect, show correct position with arrow, and -1 . Work to half a small square. All observations must be plotted
(e) (i) Line of best fit

There must be a reasonable balance of points about the line of best fit
There must be at least 5 plots on the grid for this mark to be awarded Do not allow a straight line to be drawn through a distinct curve trend Allow an acceptable curve through a curved trend of points
(e) (ii) Determination of gradient

Hypotenuse of Δ used must be greater than half the length of the drawn line
Check the read-offs and ratio. Read-offs must be accurate to half a small square
Do not allow this mark if a curve has been drawn
(e) (ii) $\quad y$-intercept

The value must be read to half a small square
Do not allow this mark if a curve has been drawn
(f) $\quad A=$ candidate's value of gradient
(f) $\quad B=$ candidate's value of intercept

Unit of A and B both correct $\left(\mathrm{s}^{-4}\right)$
(g) Measurement of L

The value should be in the range $40 \mathrm{~cm} \pm 2 \mathrm{~cm}$. Can be implied in the working It may be necessary to refer to the Supervisor's Report
(g) Correct method of working to give a value for g in range 9.0 to $11.0 \mathrm{~m} \mathrm{~s}^{-2}$
A POT error anywhere in the working will not score this mark
(g) $\quad \mathrm{Sf}$ in g

Allow 2 or 3 sf only. Apply to any value given
A bald value with no working cannot score this mark
(g) Unit of g correct (and consistent with other measurements, e.g. L)

There must be a numerical value of g for this mark to be scored
A bald value with no working cannot score this mark

25 marks in total

June 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9702/04
 PHYSICS Paper 4 (Structured Questions (A2 Core))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	04

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.
B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an \mathbf{M}-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or answer marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	04

1 (a) work done in bringing/moving unit mass M1
from infinity to the point. A1
(use of 1 kg in the definition - max 1/2)
(b) potential at infinity defined as being zero B1
forces are always attractive B1
so work got out in moving to point. B1
(max potential is at infinity - allow 1/3)
(c) (i) $\quad \varphi=-G M / R$
change $=6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times\left(\left\{6.4 \times 10^{6}\right\}^{-1}-\left\{1.94 \times 10^{7}\right\}^{-1}\right)$ C2
change $=4.19 \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1}$ (ignore sign) A1
(ii) $\quad 1 / 2 m v^{2}=m \Delta \varphi$ C1
$v^{2}=2 \times 4.19 \times 10^{7}=8.38 \times 10^{7}$ $v=9150 \mathrm{~m} \mathrm{~s}^{-1}$ A1
(d) acceleration is not constant B1
2 (a)
 (-1 for each error or omission) B2
(b) heat lost by liquid gold $=0.95 \mathrm{~m} \times 129 \times \Delta T$. C1
heat gained (silver) $=0.05 \mathrm{~m} \times 235 \times(1340-300)+0.05 \mathrm{~m} \times 105000$.. C1, C1
$122.5 \mathrm{~m} \Delta T=17470 \mathrm{~m}$
$\Delta T=143 \mathrm{~K}$ C1
temperature $=143+1340=1483 \mathrm{~K}$ A1
(c) e.g. thermocouple/resistance thermometer B1
3 (a) $\quad f_{0}$ is at natural frequency of spring (system) B1
this is at the driver frequency B1
(allow 1 mark for recognition that this is resonance)
(b) line: amplitude less at all frequencies B1
peak flatter B1
peak at f_{0} or slightly below f_{0} B1
(c) (aluminium) sheet cuts the magnetic flux/field B1
(so) currents/e.m.f. induced in the (metal) sheet B1
these currents dissipate energy M1
less energy available for the oscillations A1
so amplitude smaller A0
('current opposes motion of sheet' scores one of the last two marks)
4 (a) field causes forces on the electrons M1
and the nucleus in opposite directions A1
(field causes) electrons (to be) stripped off the atom B1
(ii) $\quad V=Q / 4 \pi \varepsilon_{0} r$

$$
\begin{aligned}
& =\left(9.8 \times 10^{-6}\right) /\left(4 \pi \times 8.85 \times 10^{-12} \times 0.21\right) \ldots \ldots . ~
\end{aligned}
$$

(c) e.g. sphere not smooth, humid air, etc B1
5 (a) centripetal force $=m v^{2} / r$. B1
magnetic force $F=B q v$. B1
(hence) $m v^{2} / r=B q v$ B1
$r=m v / B q$ A0
(b) $\quad r_{\alpha} / r_{\beta}=\left(m_{\alpha} / m_{\beta}\right) \times\left(q_{\beta} / q_{\alpha}\right)$ C1
$=\left(4 \times 1.66 \times 10^{-27}\right) /\left(9.11 \times 10^{-31} \times 2\right)$ $=3.64 \times 10^{3}$ A2
(c) (i) $\quad r_{\alpha}=\left(4 \times 1.66 \times 10^{-27} \times 1.5 \times 10^{6}\right) /\left(1.2 \times 10^{-3} \times 2 \times 1.6 \times 10^{-19}\right)$ $=25.9 \mathrm{~m}$ A2
(ii) $\quad r_{\beta}=25.9 \times 3.64 \times 10^{3}=7.13 \times 10^{-3} \mathrm{~m}$ A1
(d) (i) deflected upwards. B1
but close to original direction B1
(ii) opposite direction to α-particle and 'through side' B1
6 (a) greater binding energy gives rise to release of energy M1
so must be yttrium A1
(b) probability of decay M1
of a nucleus per unit time. A1

June 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 30

SYLLABUS/COMPONENT: 9702/05

PHYSICS
Paper 5 (Practical (A2))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	05

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	$\mathbf{9 7 0 2}$	$\mathbf{0 5}$

(c) $k=$ candidate's gradient 1
(c) Unit of k (i.e. A^{-1}) 1
$\begin{array}{ll}\text { (c) } & \mathrm{SF} \text { in } k \\ \text { Allow } 2 \text { or } 3 \text { sf only } & 1\end{array}$
(d) (i) Value of θ when $I=15 \mathrm{~A}$

Method of working must be checked. Ignore unit and small rounding errors
(d) (ii) Reasons for not being able to verify experimentally

Heating problems with the wires
Fuse may blow on psu/max. output current on psu exceeded Do not allow vague answers such as 'It is dangerous'

20 marks in total

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	05

2 A1 Sensible choice of equipment and procedure OK 1
(i.e. measure count rate and p.d.; change p.d. and measure new count rate) Unworkable methods/inappropriate choice of apparatus cannot score this mark
A2 Voltmeter shown in parallel with the GM tube or the supply 1
A3 Ratemeter/scalar/datalogger connected to terminals A and B of GMtube
B1 Radium or Cobalt source used 1
B2 Reason for choice 1
Answer must relate to half-life. This mark cannot be scored if B1 = 0
B3 Method of removing α or β radiation (depending on source used) Appropriate absorber is expected. Accept 'aluminium' or thin lead Could be shown on the diagram. Allow electric or magnetic deflection
C1/2 Any two safety precautions2
e.g. use source handling toolstore source in lead lined box when not in usedo not point source at people/do not look directly at sourceDo not allow 'protective clothing', 'lead suits', 'lead gloves', 'goggles’,etc.
D1/2 Any good/further detail 2Examples of creditworthy points might be:Repeat readings (to allow for randomness of activity) or scalar + longtimeSensible value of p.d. applied to GM tube (i.e. 50 V to 1000 V)Keep distance from source to GM tube constant/fixed/same, etc.Subtract count rate due to background radiationAluminium sheets must be mm or cm thicknessAllow other valid points. Any two, one mark each
10 marks in total

June 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9702/06

PHYSICS
Paper 6 (Options (A2))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	06

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a Bmark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or answer marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	06

Option A - Astrophysics and Cosmology

1 (a) large mass of gas (allow H and He) B1
giving off e.m. radiation (allow light) B1
held together by gravitational forces, or other good physics B1
(b) group of (many) stars B1
any further detail e.g. some dimension, shape, etc B1
(c) rocky or gaseous object B1
orbiting a star B1
seen by reflected light B1
2 measure wavelength of light received from galaxy B1
measure wavelength of light in laboratory/on Earth B1
(fractional) change in wavelength related to speed or Doppler shift gives speed B1
3 (a) $\quad v=H_{0} d$
$H_{0}=\left(1.8 \times 10^{4}\right) / 430$ C1
$=42 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ A1
(b) (i) $1 \mathrm{pc}=3.1 \times 10^{16} \mathrm{~m}$. B1
age $=1 / H_{0}$
age $=1 / H_{0}$
$=\left(3.1 \times 10^{22}\right) /\left(42 \times 10^{3}\right)$
$=\left(3.1 \times 10^{22}\right) /\left(42 \times 10^{3}\right)$ C1 C1
$=7.4 \times 10^{17} \mathrm{~s}$
$=7.4 \times 10^{17} \mathrm{~s}$ A1 A1
(ii) Earth-Moon distance $=3.8 \times 10^{5} \mathrm{~km}$ (allow 2-7×105 km). C1
(ii) $\begin{aligned} \text { speed } & =\left(3.8 \times 10^{8}\right) /\left(7.4 \times 10^{17}\right) \\ & =5.1 \times 10^{-10} \mathrm{~m} \mathrm{~s}^{-1}\end{aligned}$ $=5.1 \times 10^{-10} \mathrm{~m} \mathrm{~s}^{-1}$ A1 $5.1 \times 10^{-10} \mathrm{~m} \mathrm{~s}$
(c) This is local gravitational attraction B1
On wider scale, galaxies are receding B1
Option F - The Physics of Fluids
4 (a) (i) equal B1
(ii) density of ice is less B1
(b) mass of ice becomes equal mass of water (allow weight) M1
melted ice fills space of water displaced by ice M1
so level does not change A1
5 (a) e.g. streamline, incompressible non-viscous, horizontal flow .(1 each, max 3) B3
(b) air close to train moves at the speed of the train/air dragged along by train B1
air at some distance from the train is stationary/velocity is less B1
(so) air pressure is lower close to the train. M1
pressure difference could force passengers into side of train A1

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	06

(ii) kinetic energy given to air to cause turbulence or work needed to overcome drag force M1
energy comes from car so fuel consumption increases A1
(b) (i) drag coefficient/drag constant B1
(ii) power $=F v$ and hence M1
$P=1 / 2 C_{\mathrm{D}} \rho A v^{3}$ A0
(iii) $120 \times 10^{3}-1 / 2 \times 0.3 \times 1.2 \times 2.5 \times v^{3}$ C1
$v^{3}=2.67 \times 10^{5}$ $v=64 \mathrm{~m} \mathrm{~s}^{-1}$ A1
Option M - Medical Physics
7 (a) electrons fired at metal target B1
electrons decelerated giving off (e.m.) radiation B1
range of decelerations, so continuous spectrum B1
also, electrons in inner orbits are excited B1
de-excitation gives characteristic line spectrum B1
(b) (i) increase cathode/tube current B1
(ii) increase anode voltage B1
(iii) use aluminium filter (allow metal filter) B1
(c) $\quad I=I_{0} \mathrm{e}^{-\mu x}$ C1
In $2=0.40 \mu$$\mu=1.733 \mathrm{~cm}^{-1}$ or $=\ln 2 / 0.4$C1
$0.1=\mathrm{e}^{-1.733 \mathrm{x}}$
$x=1.33 \mathrm{~cm}$ A1
8 (a) produces greater intensity (at focus)
limits region of cell damage
allows for accurate guidance B2
(b) laser beam cauterises tissue can produce coagulation vaporisation of water in cells B2
\{in (a) and (b), allow 1 mark each up to max of 3 in either, total notto exceed 4\}
9 (a) ability to detect (small) changes in loudness/intensity B1
depends on // Δ / B1
(b) $\quad \Delta I . L .=10 \lg (\Delta I / I)$ or $I . L .=10 \lg \left(I / I_{0}\right)$ C1
$3.0=10 \lg \left(I_{2} /\left(4.5 \times 10^{-5}\right)\right.$ C1
$I_{2}=9.0 \times 10^{-5} \mathrm{Wm}^{-2}, \Delta /=4.5 \times 10^{-5} \mathrm{~W} \mathrm{~m}^{-2}$ A1

Page 4	M
	A/AS LEVEL EX

10 (a) source of (useful) energy B1
derived from (incomplete) decay of organic matter B1
(b) resources: total deposits of fossil fuels B1
reserves: fossil fuels that can be extracted (economically) B1
11 (a) heavy nucleus/heavy atom/U-235, etc B1
bombarded by neutron B1
produces two fragments of about equal mass B1
plus neutrons and energy B1
(b) (i) slows down neutrons B1
(ii) absorbs neutrons B1
(iii) maintains coolant around reactor core B1
provides biological shield/prevents radiation leakage B1
12 (a) $E_{\text {MAX }}=\left(1-T_{\mathrm{L}} / T_{\mathrm{H}}\right)$. C1 C1
$=(1-313 / 813)$
$=(1-313 / 813)$
$=0.61$ A1
(b) (i) e.g. heat loss in exhaust gases/cooling towers B1
(ii) e.g. pre-heat water entering boiler, either increase T_{H} or decrease T_{L} re-heat steam in multistage turbine, CHP system...(1 each, max 2) B2

